
International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 107
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Cloud Data Storage and Query Processing
Systems: A Review

Imran Ashraf, Tayyaba Altaf, Ayesha Rashid

Abstract -With massive increase in data size, databases have grown beyond size that can be managed at a central point. So databases
need to be distributed with capabilities of scaling, aggregation and coordination. With the advent of cloud computing resources are easy
than ever to access with the possibility of scalability, increased performance, automatic resource adaptation and up and down scaling.
However, suitable distributed management systems need to be developed to get the desired benefits from the cloud. Effective and efficient
execution of users complicated queries is a critical task of systems in cloud computing. Distributed data storage and query systems in cloud
computing needs to insure two things: efficiently organized data storage and optimized query execution with reduced cost. Different systems
have been developed and deployed in cloud computing for this purpose. This paper aims at discussing some most commonly used systems
with their pros and cons.

Index Terms: Cloud computing, distributed storage systems, distributed query systems, scalability, load balancing, replication

—————————— ——————————

1 INTRODUCTION
Databases have outgrown what single server systems can

manage and they are still in the process of further growth. In
order to fulfil the future demands of data management and
data retrieval distributed database management systems need
to be developed. These DBMSs should be able to scale
accordingly; however scaling is not an easy task. In data
distribution, coordination is needed which creates an
overhead for the systems. This overhead grows as the system
expands and this restricts the capacity of system’s scalability.
One solution to this scalability problem is the nodes or sites
automation in distributed systems. Systems autonomy can
decrease the coordination overhead. Moreover, distributed
systems need to ensure two things data storage and query
processing. These systems should be able to provide the
facilities of efficient data management and optimized query
processing. With the concept of cloud computing resource
access and usage has become very easy and cheap. Now, it is
easy to scale according to user requirements of up or down
grading. Distributed systems come with the option of varying
data placement. The idea of grid or cloud is that system
should be able to scale with the load and storage
requirements. It means that system should adapt
automatically if workload or sites available for storage and
query processing changes. Different systems have been
developed that meets cloud’s requirements of scalability,
coordination and load balancing [1, 2]. Each of these systems
provides its own functionality of scalability, load balancing,

replication, concurrency etc. This review aims at discussing
these systems’ architecture, execution, and pros and cons.

2 DISTRIBUTED DATA STORAGE AND QUERY
PROCESSING SYSTEMS

2.1 PIAZZA

The Piazza system [3, 4] is a peer-t-peer data management
system for integrating data sources with heterogeneous
schemas. Instead of requiring all sites to share a common
schema, e.g. as PIER does, Piazza mediates between these
schema. Both unstructured and super node overlay networks
can be used but sites are not free to connect o any other site. A
connection between two sites implies a partial or full schema
mapping between the sites. Creating such schema mappings
are heavy weight operations, which means that new
connections are not added frequently. Because of this the
system is assumed to have a low churn level with very few
sites joining or leaving.

The focus of the Piazza project has been schema mediation
and query reformulation according to schema mappings.
Piazza sites store data in XML and issue queries in language
inspired by XQuery. Queries that are sent over the network
are reformulated to reject schema mappings as they propagate
from one site to another. The result of a query is similarly
rewritten to new schemas as it is passed back to the querying
site.

 Replication is possible in Piazza. Piazza storage
description defines what content a site should store and this
description can define parts of other sites’ databases that
should be replicated locally. Like network connections,
update to this description is not expected to be a very
frequent operation and hence not automated.

————————————————
• Imran Ashraf is currently working as Lecturer at Information Technology

Department of, University of The Punjab, Gujranwala, Pakistan.
PH-00923456473032. E-mail: ashrafimran@live.com

• Tayyaba Altaf & Ayesha Rashid are serving are pursuing MS program in
CS in NCBA&E and University of Gujrat, Pakistan respectively.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 108
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

2.2 PeerDB

PeerDB [5-7] is a peer-to-peer relational DBMS using mobile
agents in query processing. It is built on the BestPeer platform
[8], which is a system for mobile agents in peer-to-peer
networks. BestPeer uses a super node network and PeerDB
combines this with the MySQL DBMS for data storage. Sites
in a PeerDB system can have heterogeneous schemas. Each
schema is described by keywords and query processing uses
standard information retrieval techniques to send probable
candidates for matching tables.

When a query is issued, it is first parsed to extract a table
and attribute names. These names are looked up in a local
dictionary to send matched in the local database. Agents are
also shipped onto neighbouring sites to send matching tables
and attributes there. Possible matches are returned to the
querying site where the user selects which tables are to be
included in the final answer. After the user has made this
choice the agents on the matching sites rewrite the query to
match the local schema and return tuples a reply to the query.

2.3 AmbientDB

 AmbientDB [9] uses a DHT to provide a self
organizing peer-to-peer network of intelligent home
appliances. These devices share information using database
system. The DHT serve both as a way to connect he devices
and as an indexing mechanism for data tree in the database.

 The challenges facing AmbientDB include mobile
devices with limited networking bandwidth and computing
resources. The devices may also disconnect frequently and
stay disconnected or long periods of time. AmbientDB
provides database service both for single devices that are
currently away from the rest of the network and for the rest of
the network. Device that are able to connect to other devices
nearby can access each other’s data, and synchronize by
updating data items that have been updated while the devices
where disconnected.

Figure: AmbientDB environment [9]

The self organizing property f AmbientDB makes it possible
for devices to extend the database schema and data
propagation strategies e.g. a thermometer may extend the
database schema to include temperature recordings that can
be used by other devices to automatically adjust to the
surroundings.

2.4 APPA

 The Atlas Peer-to-peer Architecture (APPA) [10]
built on a super node or structured overlay network and
provides a full stack of data storage and querying services.

The APPA system consists of multiple layers. On the bottom
layer, APPA provides a simple key value store, and higher
level layers build more advance service.

On the op level is service such as schema management,
replication and query processing. Schema mapping in APPA

Fig 1: PeerDB Architecture [5]

Fig 2: DHT based APPA architecture [10]

Fig 3: Super peer based APPA architecture [10]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 109
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

is different from the pair wise schema mappings in Piaza. In
APPA site agree on a common global schema and express
their tables as view of this schema. Querying is done against
the local view, and this query is reformulated against the
global schema before the set of sites with data relevant to
the query are found.

2.5 Mariposa

 Mariposa [11] is a distributed DBMS that uses
economic models to solve optimization problems. Table
fragments are considered a resource and are bought and sold
during a bidding process that is used to decide which sites
should participate in processing a given query.

A new query is given a budget to use on query processing.
The sites bid for the execution of this query and the economy
is constructed in such a way that the more expensive query
plans are more efficient. This means that a query that has been
gin a large budget is prioritized and can buy a more efficient
execution. This bidding process includes the buying and
selling of table fragments in order to move data closer to the
processing sites.

2.6 ObjetGlobe

 ObjectGlobe [12, 13] is a distributed storage and
query processing system where data, query operators and
computing power is traded. Each site can offer a combination
of data sets, query operators and computing power. A site
that wants to execute a query combines components from
several other sites and buys computing resources to process

the query. A pipeline is constructed that ships intermediate
results from one operator to another.

The difference between ObjectGlobe and Mariposa is that
while Mariposa used the economic model to improve
querying performance, ObjectGlobe has a more direct
connection to a real economy, where data sets, operator
implementations and computing power are actually sold.

2.7 HadoopDB

 HadoopDB [14] is a database middleware system
for the cloud. It is built on top of Hadoop, an implementation
of Map Reduce [15]. Each site in the system has local DBMS
that manages storage and these sites are connected by the
Hadoop framework. The local database is integrated with the
Map Reduce framework so that it can be accessed similarly to
Hadoop’s own distributed file system, HDFS. A metadata
catalogue containing information about local DBMSs, data
sets, partitioning and replication is stored in HDFS.

Fig 4: Mariposa Architecture [11]

Fig 5: Distributed query processing in ObjectGlobe [12]

Fig 6: HadoopDB architecture [14]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 110
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The Hadoop framework is used to coordinate tasks and to
distribute query processing, and its failure resilience
properties are used to achieve fault tolerance. A modified
implementation of Hive [16] is used to transform a query
from the SQL like query language to Map Reduce tasks.
Query plans are constructed so that as much query processing
as possible is done in the local DBMS on each site. By doing
this, HadoopDB is able to maintain the failure resilience
properties of Hadoop and much of the query optimization of
the DBMS.

2.8 MongoDB

 MongoDB [17] is document-oriented like CouchDB,
but provides a much more advanced querying system. The
basic data unit is a semi-structured document and documents
are grouped into collections. Typically, there is a collection for
each document type. Data can be fragmented and replicated
to increase availability and performance. MongoDB also
provides automatic load balancing for query load and data
distribution. Queries are posed n an imperative language by
defining filters for a scan over a document collection and B-
tree indices are used to increase performance.

2.9 VoltDB

 A more traditional relational DBMSs is provided by
VoltDB [18, 19].VoltDB is a distributed main memory DBMS
that uses a traditional relational data model with schemas
defined in SQL. However, it is not as traditional when it
comes to querying.

Each site runs a single threaded server process. Because of
single threading no locking is used and no concurrency
issues occur. All access to the table is via stored procedures
that constitute a micro transaction. Being a main memory
DBMS, replication is used to provide data persistence.
Active replication to other site in the same data centre is
issued to protect against larger outages. When user needs
data from multiple sites one site acts as a coordinator. It
distributes the work, collects the result and returns it.
Integrity is ensured and parallel partitions increases
throughput.

3 DISCUSSIONS AND CONCLUSION
The discussed systems provide both data storage and query
processing facilities for the cloud computing. Each system
has been designed in a unique way to provide these
facilities. These systems are not compared in the sense of
being superior to one another. The chief aim is to describe
how they work and support user needs of storage and
query processing. These systems are most commonly used
systems in order to provide the facilities of scalability,
automatic load balancing, dynamic adaptability, data
integration, query optimization, schema formulation,
replication, fault tolerance, availability and durability. Their
features and weaknesses are discussed in points in the
given table. The future work is to do a performance
evaluation of these systems with experiment.

Fig 7: Cluster architecture [19]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 111
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

TABLE 1
FEATURES AND WEAKNESSES OF DATA STORAGE & QUERY PROCESSING SYSTEMS

 Attribute

 System

Features Weaknesses

AmbientDB • Based on DHT
• Self organizing
• Suitable for networks with limited

bandwidth

• Sites disconnect frequently
• System may be offline for long periods of

time

APPA • Built on structured overlay network
• Comprised of multiple layers; layers

provide both low level and high level
services

• Replication supported
• Has a common global schema

• Overhead due to both local query
execution and its reformulation for global
schema

HadoopDB • Based on HDFS
• Each site has a local database
• Replication supported
• Fault tolerant
• Hive is used to transform SQL query to Map

Reduce

• System is overhead due to frequent
checkpointing, runtime scheduling and
block-level restarting.

Mariposa • Use economic models for optimization
• Bidding is used for query performance

• Bidding process may be expensive

MongoDB • Documented oriented
• Basic unit is semi-structured document
• Fragmentation and replication supported
• Automatic load balancing
• Uses B-tree indices for performance

• Increased number of connections or write
requests seriously affects the performance
of MongoDB

ObjectGlobe • Bidding is done on data sets, operator
implementations and computing power for
optimization

• Increased cost due to dynamic
extensibility

PeerDB • Relational DBMS
• Built on BestPeer platform
• Supports heterogeneous schema
•

• Overhead due to retrieval and user’s
selection of attribute list

Piazza • For heterogeneous schemas
• May use both structured and super node

overlay networks
• Stores data in XML
• Queries are in a XQuery type
• Replication supported

• Sites are not free to connect to any other
site

• Does heavy weight operations
• New connections are not connected

frequently
• Have low churn level
• Updates are not frequent

VoltDB • Traditional relational DBMS
• Main memory DBMS
• Queries are SQL based
• Single threading
• Replication supported
• No concurrency issues
• High availability
• ACID guarantee
• High durability

• No multi threading
• All access is via stored procedures

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 112
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

REFERENCES
[1] R. Agrawal, A. Ailamaki, P. A. Bernstein, E. A. Brewer, M. J.

Carey, S. Chaudhuri, et al., "The Claremont report on
database research," ACM SIGMOD Record, vol. 37, pp. 9-19,
2008.

[2] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D.
Paparas, and A. Delis, "Flexible use of cloud resources
through profit maximization and price discrimination," in
Data Engineering (ICDE), 2011 IEEE 27th International
Conference on, 2011, pp. 75-86.

[3] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and
I. Tatarinov, "The piazza peer data management system,"
Knowledge and Data Engineering, IEEE Transactions on, vol. 16,
pp. 787-798, 2004.

[4] I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N.
Dalvi, et al., "The Piazza peer data management project,"
ACM Sigmod Record, vol. 32, pp. 47-52, 2003.

[5] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou, "PeerDB: A P2P-
based system for distributed data sharing," in Data
Engineering, 2003. Proceedings. 19th International Conference on,
2003, pp. 633-644.

[6] B. C. Ooi, Y. Shu, and K.-L. Tan, "Relational data sharing in
peer-based data management systems," ACM SIGMOD
Record, vol. 32, pp. 59-64, 2003.

[7] B. C. Ooi, K.-L. Tan, A. Zhou, C. H. Goh, Y. Li, C. Y. Liau, et
al., "PeerDB: peering into personal databases," in Proceedings
of the 2003 ACM SIGMOD international conference on
Management of data, 2003, pp. 659-659.

[8] W. S. Ng, B. C. Ooi, and K.-L. Tan, "Bestpeer: A self-
configurable peer-to-peer system," in Data Engineering, 2002.
Proceedings. 18th International Conference on, 2002, p. 272.

[9] W. Fontijn and P. Boncz, "AmbientDB: P2P data
management middleware for ambient intelligence," in
Pervasive Computing and Communications Workshops, 2004.

Proceedings of the Second IEEE Annual Conference on, 2004, pp.
203-207.

[10] R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez,
"Design and implementation of Atlas P2P architecture,"
Global Data Management, vol. 8, p. 98, 2006.

[11] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J.
Sidell, et al., "Mariposa: a wide-area distributed database
system," The VLDB Journal, vol. 5, pp. 48-63, 1996.

[12] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, S.
Seltzsam, and K. Stocker, "Objectglobe: Open distributed
query processing services on the internet," IEEE Data Eng.
Bull., vol. 24, pp. 64-70, 2001.

[13] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A.
Kreutz, S. Seltzsam, et al., "ObjectGlobe: Ubiquitous query
processing on the Internet," The VLDB Journal, vol. 10, pp. 48-
71, 2001.

[14] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A.
Silberschatz, and A. Rasin, "HadoopDB: an architectural
hybrid of MapReduce and DBMS technologies for analytical
workloads," Proceedings of the VLDB Endowment, vol. 2, pp.
922-933, 2009.

[15] J. Dean and S. Ghemawat, "MapReduce: simplified data
processing on large clusters," Communications of the ACM,
vol. 51, pp. 107-113, 2008.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S.
Anthony, et al., "Hive: a warehousing solution over a map-
reduce framework," Proceedings of the VLDB Endowment, vol.
2, pp. 1626-1629, 2009.

[17] M. homepage, "http://www.mongodb.org," ed, 2014.
[18] T. V. homepage, "http://voltdb.com," ed, 2014.
[19] L. VoltDB, "Voltdb technical overview," ed: Whitepaper,

2010.

IJSER

http://www.ijser.org/
http://www.mongodb.org,/
http://voltdb.com,/

	1 Introduction
	2 Distributed Data Storage and Query Processing Systems
	3 Discussions and Conclusion
	References

